Barriers and opportunities for research in artificial intelligence applied to health in Latin America: A perspective based on SWOT analysis

Authors

DOI:

https://doi.org/10.59093/27112330.164

Keywords:

artificial intelligence, health research, health systems, Latin America, ethics, research.

Abstract

Artificial intelligence (AI) has progressively consolidated as a tool with the potential to transform health research and clinical practice, particularly in settings characterized by high care demand and limited resources. In Latin America, the incorporation of these technologies occurs within a context marked by a high burden of disease, deep structural inequalities, fragmentation of health systems, and notable institutional heterogeneity, factors that directly shape the development, validation, and implementation of AI-based solutions. This article presents a reflection based on expert consensus on the main barriers and opportunities for research in artificial intelligence applied to health in the region. The document was developed through a structured deliberative process involving specialists in hepatology, surgery, and AI from different countries in Latin America and Europe, using SWOT analysis as the conceptual framework to organize the discussion. This exercise made it possible to identify relevant weaknesses, including the limited availability of leadership with formal training in AI, the fragility of collaborative research networks, insufficient dedicated funding, and persistent gaps in technological infrastructure. In parallel, important opportunities were recognized, such as the growing interest of the academic and clinical community, the availability of national a international funding calls the potential to consolidate multidisciplinary teams, and the support of scientific societies and regional and international collaborative networks. Based on these elements, strategies are proposed to strengthen regional capacities through structured training programs collaborative projects focused on priority clinical problems, sustainability-oriented research models, and the development of ethical and regulatory frameworks aligned with the Latin American context. Finally, the contrast with the European experience underscores the need to advance toward integrated ecosystems in which research, clinical practice, and regulation evolve in a coordinated manner, as a prerequisite for the responsible and sustainable adoption of AI in health. This consensus proposes an initial roadmap to guide the responsible development of AI research in health in Latin America.

Downloads

Download data is not yet available.

Author Biographies

Ismael Yepes-Barreto, Universidad de Cartagena

Departamento de Investigaciones, Facultad de Medicina, Universidad de Cartagena. Cartagena, Colombia.

Lorena Martínez, Universidad Nacional de Asunción

Departamento de Gastroenterología y Endoscopia Digestiva, Hospital de Clínicas, Facultad de Ciencias Médicas, Universidad Nacional de Asunción. San Lorenzo, Paraguay.

Marcos Girala, Universidad Nacional de Asunción

Departamento de Gastroenterología y Endoscopia Digestiva, Hospital de Clínicas, Facultad de Ciencias Médicas, Universidad Nacional de Asunción. San Lorenzo, Paraguay.

Raquel Sánchez-Santos, Complejo Hospitalario Universitario de Vigo

Servicio de Cirugía General y Digestiva, Complejo Hospitalario Universitario de Vigo, Instituto de Investigación Sanitaria Galicia Sur, España.

Florian Graz, Sociedad Alemana para la Cooperación Internacional (GIZ)

Programa de Alianzas Hospitalarias, Sociedad Alemana para la Cooperación Internacional (GIZ), Alemania.

Juan Carlos Restrepo, Universidad de Antioquia, Hospital Pablo Tobón Uribe

Unidad de Hepatología, Hospital Pablo Tobón Uribe, Grupo de Gastrohepatología, Universidad de Antioquia. Medellín, Colombia.

Óscar Beltrán, Fundación Cardioinfantil

Sección de Hepatología, Fundación Cardioinfantil. Bogotá, Colombia.

Mirta Peralta, Hospital de Infecciosas F. J. Muñiz

Hospital de Infecciosas F. J. Muñiz, Ciudad Autónoma de Buenos Aires (CABA). Buenos Aires, Argentina.

Ezequiel Ridruejo, Centro de Educación Médica e Investigaciones Clínicas (CEMIC)

Centro de Educación Médica e Investigaciones Clínicas (CEMIC). Buenos Aires, Argentina.

Mario Alvares-da-Silva, Hospital de Clínicas de Porto Alegre

División de Gastroenterología, Hospital de Clínicas de Porto Alegre. Porto Alegre, Brasil.

Javier Díaz, Hospital Nacional Edgardo Rebagliati Martins (HNERM)

Departamento de Gastroenterología, Hospital Nacional Edgardo Rebagliati Martins (HNERM). Lima, Perú.

Lucía Coli, Heidelberg University

Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University. Mannheim, Alemania.

Jimmy Daza, Heidelberg University

Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University. Mannheim, Alemania.

Ernesto Sáenz, Heidelberg University

Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University. Mannheim, Alemania.

Nathally Espinosa, Heidelberg University

Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University. Mannheim, Alemania.

Timo Itzel, Heidelberg University

Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University. Mannheim, Alemania.

Andreas Teufel, Heidelberg University

Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University. Mannheim, Alemania.

Juan Turnes, Complejo Hospitalario Universitario de Pontevedra

Departamento de Gastroenterología y Hepatología, Complejo Hospitalario Universitario de Pontevedra, Instituto de Investigación Sanitaria Galicia Sur, España.

References

Topol EJ. High-performance medicine: The convergence of human and artificial intelligence. Nat Med 2019;25:44-56. https://doi.org/10.1038/s41591-018-0300-7.

Schwalbe N, Wahl B. Artificial intelligence and the future of global health. Lancet 2020;395:1579-1586. https://doi.org/10.1016/S0140-6736(20)30226-9.

Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med 2022;28:31-38. https://doi.org/10.1038/s41591-021-01614-0.

World Health Organization (WHO). Ethics and governance of artificial intelligence for health: WHO guidance. Geneva: World Health Organization; 2021. ISBN 978-92-4-002920-0.

Sallam M. ChatGPT utility in healthcare education, research, and practice: systematic review on the promising perspectives and valid concerns. Healthcare 2023;11:887. https://doi.org/10.3390/healthcare11060887.

Organización Panamericana de la Salud (OPS). Salud en las Américas+, edición 2017: Panorama regional y perfiles de país. Washington, DC: Organización Panamericana de la Salud; 2017. 260 p.

Abramo L, Cecchini S, Ullmann H. Addressing health inequalities in Latin America: the role of social protection. Cien Saude Colet 2020;25:1587-1598. English, Spanish. https://doi.org/10.1590/1413-81232020255.32802019.

Wahl B, Cossy-Gantner A, Germann S, Schwalbe NR. Artificial intelligence (AI) and global health: How can AI contribute to health in resource-poor settings? BMJ Glob Health 2018;3:e000798. https://doi.org/10.1136/bmjgh-2018-000798.

Panch T, Mattie H, Atun R. Artificial intelligence and algorithmic bias: Implications for health systems. J Glob Health 2019;9:010318. https://doi.org/10.7189/jogh.09.020318.

Celi LA, Cellini J, Charpignon ML, Dee EC, Dernoncourt F, Eber R, et al. Sources of bias in artificial intelligence that perpetuate healthcare disparities-A global review. PLOS Digit Health 2022;1:e0000022. https://doi.org/10.1371/journal.pdig.0000022.

Ali MR, Lawson CA, Wood AM, Khunti K. Addressing ethnic and global health inequalities in the era of artificial intelligence healthcare models: A call for responsible implementation. J R Soc Med 2023;116:260-262. https://doi.org/10.1177/01410768231187734.

Bedi S, Liu Y, Orr-Ewing L, Dash D, Koyejo S, Callahan A, et al. Testing and evaluation of health care applications of large language models: A systematic review. JAMA 2025;333:319-328. https://doi.org/10.1001/jama.2024.21700.

World Health Organization (WHO). Artificial intelligence is reshaping health systems: state of readiness across the WHO European Region. Geneva: World Health Organization; 2025. WHO/EURO:2025-12707-52481-81028.

Saavedra J, Cafagna G. Inteligencia artificial en los sistemas de salud: ¿qué falta en América Latina y el Caribe? BM Blogs; 2025 Apr 7. Disponible en: https://blogs.worldbank.org/es/latinamerica/inteligencia-artificial-sistemas-salud-america-latina-caribe.

Comisión Económica para América Latina y el Caribe (CEPAL). Índice Latinoamericano de Inteligencia Artificial (ILIA) 2025. Santiago: Comisión Económica para América Latina y el Caribe; 2025. 195 p. (Documento ONU: LC/TS.2025/68/Rev.1).

Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med 2019;17:195. https://doi.org/10.1186/s12916-019-1426-2.

European Commission. European approach to artificial intelligence. Brussels: European Commission; 2025. Shaping Europe’s Digital Future initiative. Last updated 5 December 2025. Disponible en: https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence

Hassan M, Kushniruk A, Borycki E. Barriers to and Facilitators of Artificial Intelligence Adoption in Health Care: Scoping Review. JMIR Hum Factors 2024;11:e48633. https://doi.org/10.2196/48633.

Meskó B, Görög M. A short guide for medical professionals in the era of artificial intelligence. NPJ Digit Med 2020;3:126. https://doi.org/10.1038/s41746-020-00333-z.

Kueper JK, Terry AL, Zwarenstein M, Lizotte DJ. Artificial intelligence and primary care research: A scoping review. Ann Fam Med 2020;18:250-258. https://doi.org/10.1370/afm.2518.

Rincon EH, Jimenez D, Aguilar LA, Florez JM, Tapia AE, Penuela CL. Mapping the use of artificial intelligence in medical education: A scoping review. BMC Med Educ 2025;25:526. https://doi.org/10.1186/s12909-025-07089-8.

Kiener M. Artificial intelligence in medicine and the disclosure of risks. AI Soc 2021;36:705-713. https://doi.org/10.1007/s00146-020-01085-w.

Published

2026-01-03

How to Cite

Yepes-Barreto, I., Martínez, L., Girala, M., Sánchez-Santos, R., Graz, F., Restrepo, J. C., … Turnes, J. (2026). Barriers and opportunities for research in artificial intelligence applied to health in Latin America: A perspective based on SWOT analysis. Hepatología, 7(1), 32–43. https://doi.org/10.59093/27112330.164

Issue

Section

Reflection articles
Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
Escanea para compartir
QR Code