Histological liver changes caused by chronic intake of monosodium glutamate

Authors

DOI:

https://doi.org/10.52784/27112330.158

Keywords:

liver, liver disease, liver injury, toxicity, histopathology, sodium glutamate.

Abstract

Introduction. Glutamate is an amino acid that is involved in numerous reactions related to liver metabolism, so the overactivation of glutamate receptors due to the ingestion of monosodium glutamate (MSG) from the diet could lead to liver tissue damage. The aim of this study was to evaluate the histological changes produced in the liver of rats subjected to chronic administration of MSG. Methodology. Two sets of animals were used, an experimental and a control group, each consisting of six five-week-old Wistar male rats. The experimental group was administered 0.1 g of low-calorie cheese containing 99% purity MSG monohydrate (pure food grade) diluted in 50 μL of deionized water (0.3 g/100 g of weight) daily. The control group was administered the same amount of sodium as that contained in the MSG of the treated group, but in the form of NaCl. At the end of the treatment, the rats belonging to both groups were weighed and sacrificed, and their liver was removed for histological analysis. Histological sections were obtained and stained with hematoxylineosin, PAS and Masson's trichrome. The analysis of the histological sections was carried out by direct observation with an optical microscope and a 40x objective. Results. In general, conservation and normal appearance of the histological characteristics of the liver acini were observed in the control group, while the liver of the rats treated with MSG presented different degrees of hydropic degeneration, variable amounts of eosinophilic hyaline bodies, inflammatory infiltration of mononuclear cells and focal necrosis, that affected mainly zone 1 of the liver acinus. Conclusion. The results allow us to provide evidence about the histopathological alterations that the chronic intake of MSG causes on the liver tissue. It is recommended to alert the population to reduce the intake of foods that have GMS for flavoring.

Downloads

Download data is not yet available.

Author Biographies

Ana Patricia Fabro, Universidad Nacional del Litoral

Bioquímica, PhD en Educación en Ciencias Experimentales. Profesora Titular de la Cátedra de Morfología Normal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral. Santa Fe, Argentina.

María del Carmen Contini, Universidad Nacional del Litoral

Bioquímica, PhD en Ciencias Biológicas. Profesora Adjunta del Laboratorio de Investigaciones en Fisiología Experimental (LIFE), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Universidad Nacional del Litoral. Santa Fe, Argentina.

Noelia Villafañe, Universidad Nacional del Litoral

Bioquímica. Docente de la Cátedra de Morfología Normal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral. Santa Fe, Argentina.

Adriana Benmelej, Universidad Nacional del Litoral

Bioquímica, Especialista en Endocrinología. Docente de la Cátedra de Morfología Normal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral. Santa Fe, Argentina.

References

Lucas DR, Newhouse JP. The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 1957;58:193-201. https://doi.org/10.1001/archopht.1957.00940010205006.

Ohguro H, Katsushima H, Maruyama I, Maeda T, Yanagihashi S, Metoki T, et al. A high dietary intake of sodium glutamate as flavoring (ajinomoto) causes gross changes in retinal morphology and function. Exp Eye Res 2002;75:307-315.

Petrenko AB, Shimoji K. A possible role for glutamate receptor-mediated excitotoxicity in chronic pain. J Anesth 2001;15:39-48. https://doi.org/10.1007/s005400170050.

Imam R. Genotoxicity of monosodium glutamate: A review on its causes, consequences and prevention. Indian J Pharm Educ Res 2019;53:S510-517. https://doi.org/10.5530/ijper.53.4s.145.

Gill SS, Pulido OM. Glutamate receptors in peripheral tissues: current knowledge, future research, and implications for toxicology. Toxicol Pathol 2001;29:208-223. https://doi.org/10.1080/019262301317052486.

Contini MDC, Fabro A, Millen N, Benmelej A, Mahieu S. Adverse effects in kidney function, antioxidant systems and histopathology in rats receiving monosodium glutamate diet. Exp Toxicol Pathol 2017;69:547-556. https://doi.org/10.1016/j.etp.2017.03.003.

Albarracín SL, Baldeón ME, Sangronis E, Cucufate-Petruschina A, Reyes FGR. L-Glutamato: un aminoácido clave para las funciones sensoriales y metabólicas. Arch Latinoam Nutr 2016;66:101-112.

Wang Z, Zhang J, Wu P, Luo S, Li J, Wang Q, et al. Effects of oral monosodium glutamate administration on serum metabolomics of suckling piglets. J Anim Physiol Anim Nutr (Berl) 2020;104:269-279. https://doi.org/10.1111/jpn.13212.

Dingledine R, Conn PJ. Peripheral glutamate receptors: molecular biology and role in taste sensation. J Nutr 2000;130:S1039-1042. https://doi.org/10.1093/jn/130.4.1039S.

Kondoh T, Mori M, Ono T, Torii K. Mechanisms of umami taste preference and aversion in rats. J Nutr 2000;130:S966-970. https://doi.org/10.1093/jn/130.4.966S.

Pendyal A, Gelow JM. Cardiohepatic interactions: Implications for management in advanced heart failure. Heart Fail Clin 2016;12:349-361. https://doi.org/10.1016/j.hfc.2016.03.011.

Brenner G, Stevens C. Farmacologia básica. 5th ed. Barcelona: Elsevier España; 2019. p. 576. ISBN: 9788491134244.

Izzo V, Bravo-San Pedro JM, Sica V, Kroemer G, Galluzzi L. Mitochondrial permeability transition: New findings and persisting uncertainties. Trends Cell Biol 2016;26:655-667. https://doi.org/10.1016/j.tcb.2016.04.006.

Coelho CFF, França LM, Nascimento JR, Dos Santos AM, Azevedo-Santos APS, Nascimento FRF, et al. Early onset and progression of non-alcoholic fatty liver disease in young monosodium l-glutamate-induced obese mice. J Dev Orig Health Dis 2019;10:188-195. https://doi.org/10.1017/s2040174418000284.

Olowofolahan A, Adeosun O, Afolabi O, Olorunsogo O. Effect of methanol extract of Mangifera indica on mitochondrial membrane permeability transition pore in normal rat liver and monosodium glutamate-induced liver and uterine damage. J Complement Altern Med Res 2018;5:1-14. https://doi.org/10.9734/JOCAMR/2018/40587.

Al-Mosaibih MA. Effects of monosodium glutamate and acrylamide on the liver tissue of adult wistar rats. Life Sci J 2013;10:35-42.

Contini MC, Millen N, Mahieu S. Antropometría, metabolismo y estado oxidativo en ratas hembras con obesidad inducida por glutamato monosódico oral. FABICIB 2012;16:48-60. https://doi.org/10.14409/fabicib.v16i1.897.

Elshafey M, Eladl MA, El-Sherbiny M, Atef H, El Morsi DA. Hepatotoxicity of monoglutamate sodium: Oxidative stress and histopathlogical study. FASEB J 2017;31:lb31. https://doi.org/https://doi.org/10.1096/fasebj.31.1_supplement.lb31.

Ishaque MRM, Abbasi P, Talpur M, Ahmed T, Hussain A, Arsalan M. Hepatic changes in liver of albino rats induced by monosodium glutamate and hepatoprotective role of ginkgo biloba. Am J Pharm Sci 2018;5:12029-11235.

Olowofolahan AO, Adeosun OA, Olorunsogo OO. Monosodium glutamate induces cytotoxicity in rat liver via mitochondrial permeability transition pore opening. Cell Biochem Biophys 2020;78:429-437. https://doi.org/10.1007/s12013-020-00944-z.

Waer HF, Edress S. The effect of monosodium glutamate (MSG) on rat liver and the ameliorating effect of “guanidino ethane sulfonic acid (GES)” (histological, histochemical and electron microscopy studies). Egypt J Hosp Med 2006;24:524-538.

Eweka A, Igbigbi P, Ucheya R. Histochemical studies of the effects of monosodium glutamate on the liver of adult wistar rats. Ann Med Health Sci Res 2011;1:21-29.

Othman S, Bin-Jumah M. Histomorphological changes in mono-sodium glutamate induced hepato-renal toxicity in mice. Int J Pharmacol 2019;15:449-456. https://doi.org/10.3923/ijp.2019.449.456.

Egbuonu E, Ezeanyika LUS, Ejikeme PM, Obidoa O. Histomorphologic alterations in the liver of male Wistar rats treated with l-arginine glutamate and monosodium glutamate. Res J Environ Toxicol 2010;4:205-213.

Nakanishi Y, Tsuneyama K, Fujimoto M, Salunga TL, Nomoto K, An JL, et al. Monosodium glutamate (MSG): a villain and promoter of liver inflammation and dysplasia. J Autoimmun 2008;30:42-50. https://doi.org/10.1016/j.jaut.2007.11.016.

Olowofolahan A, Aina O, Hassan E, Olorunsogo O. Ameliorative potentials of methanol extract and chloroform fraction of drymaria cordata on MSG-induced uterine hyperplasia in female wistar rats. European J Med Plants 2017;20:1-9. https://doi.org/https://doi.org/10.9734/EJMP/2017/36335.

Ortiz GG, Bitzer-Quintero OK, Zárate CB, Rodríguez-Reynoso S, Larios-Arceo F, Velázquez-Brizuela IE, et al. Monosodium glutamate-induced damage in liver and kidney: a morphological and biochemical approach. Biomed Pharmacother 2006;60:86-91. https://doi.org/10.1016/j.biopha.2005.07.012.

Belemets N, Kobyliak N, Tsyryuk O, Kuryk O, Falalyeyeva T. Histopathological analysis of liver tissue in monosodium glutamate-induced obese rats. Res J Pharm Biol Chem Sci 2016;7:1823-1828.

Banerjee A, Mukherjee S, Maji BK. Worldwide flavor enhancer monosodium glutamate combined with high lipid diet provokes metabolic alterations and systemic anomalies: An overview. Toxicol rep 2021;8:938-961. https://doi.org/10.1016/j.toxrep.2021.04.009.

Kazmi Z, Fatima I, Perveen S, Malik SS. Monosodium glutamate: Review on clinical reports. Int J Food Prop 2017;20:1807-1815. https://doi.org/10.1080/10942912.2017.1295260.

Published

2022-07-05

How to Cite

Fabro, A. P., Contini, M. del C., Villafañe, N., & Benmelej, A. (2022). Histological liver changes caused by chronic intake of monosodium glutamate. Hepatología, 3(2), 191–202. https://doi.org/10.52784/27112330.158

Issue

Section

Original articles
Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
Crossref Cited-by logo
Escanea para compartir
QR Code